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ABSTRACT

We discuss questions related to uncertainty in scientific computations for
mathematical models. A computationally tractable probabilistic framework to
treat uncertainty in the estimation of parameters or inverse problems is given.
The theory is illustrated by a simple computational example for the estimation
of constant parameters in differential equations by treating the parameters as
random variables.
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1 Introduction

The remarks on uncertainty offered here were stimulated by a special session
at the STAM National Meeting in Toronto in July, 1998. In particular, presen-
tations by Mac Hyman and Linda Petzold prompted the simple but hopefully
useful observations we make. The general topic of “quantifiying uncertainty”
and then minimizing or controlling it was the focus of a STAM/NSF workshop
in Washington in June 1998 and discussions with participants of that workshop
also influenced us to think about the topic.

Uncertainty (recognized or not) is present in much of what we do as applied
mathematicians. It arises in our approximations to physical and biological sys-
tems when we write dynamical or static equations and constraints. Our models
may be compartmental or distributed and often involve reduction in order and
subsequent discretization either at the finite or infinite dimensional level. Once
we have models for the processes of interest, we often introduce computational
uncertainty through forward simulations, inverse or parameter estimation pro-
cedures, and sensitivity and robustness analyses (as in control design).

Most often our efforts do not include discussions of these uncertainties. In-
deed there is a general absence of accepted scientific frameworks for quantifying
and controlling uncertainties from underlying sources of error in estimates, com-
putations and analysis.

Seldom are we able to treat with care the relationship between levels of un-
certainty and the nondeterministic nature of currently popular “softer” sciences
involving biological, sociological, economic and demographic (especially popula-
tion behavior) studies. There are an overwhelming number of related questions.
What do we mean by a “good model”? How do we know when we have one?
How do we assess accuracy in fitting of data to competing models? How much
weight do we give to predictive capability of models versus their preservation of
certain qualitative, quantitative or asymptotic behaviors? In regard to forward
simulations or inverse problem estimates, how do we attach “goodness” or va-
lidity to numbers that we produce from computations? More specifically, how
do we introduce nondeterministic features in our models and calcualtions such
as numerical simulations or parameter estimation algorithms?

Immediate possibilities come to mind in response to such philosophical cog-
itations. Among the more traditional approaches are the following:

1) Use of stochastic ordinary or partial differential equation models. These
models may involve simple additive “noise” terms and random initial val-
ues or they may include a much more comprehensive treatment of stochas-
ticity in coefficients (parameterizations), nonlinearities, boundary formu-
lations, constraints, etc.

2) Use of “error bars” as uncertainty bounds in simulation results. These
error bars may be in recognition of modeling error including parameteri-
zation error, initial data error, computational (formula and/or machine)



error, etc. This approach could encompass the reporting of computational
results in a manner similar to that used by experimentalists with data,
requiring scientists to discuss the variability and uncertainty associated
with a particular set of numbers generated by simulations.

3) Use of uncertainty or error bars in parameter estimates, optimal controls,
sensitivity and robustness bounds. This is essentially the same approach
as in 2) extended to a much larger range of computational questions.
For example, consider a parameter estimation problem involving a best
estimate ¢* to be chosen from a set () of admissable values using data &;
for z(t;) where &(t) = f(t,z(t),q). As an alternative, one might calculate
not ¢*, but a range of values in [§ — §, §+ 6] where § embodies probablistic
information and § approximates g*.

To continue with the rather concrete items mentioned above, we note that
while 1)-3) above each include stochasticity or uncertainty, 1) versus 2),3) entail
very different paradigms for inclusion of uncertainty. The stochastic differen-
tial equation approach which leads to a stochastic calculus, for example, for
equations of the form dz(t) = f(t,z(t), q)dt + dw(t), has resulted over the past
decades in a tremendous amount of mathematical literature and numerous the-
oretical tools. However, there are a number of limitations in this approach. In
particular, one generally requires very specific types of noise (additive, initial
data, white noise, etc.) to obtain a rigorous theory. Stochastic parameters (such
as rate constants, delays, nonlinearities) not in a special class are generally not
amenable to a theoretical treatment. Overall the theoretical frameworks de-
veloped have not had the desired impact on practical aspects of uncertainty in
modeling and computation. The research literature (applied as well as theoret-
ical) also contains many specialized stochastic differential equation simulation
methods, but ensembles of solutions are often computationally expensive for
systems of interest in applications.

With respect to 2) and 3), the nearest semblance to an “error bar” theory
presently available are the a priori error bounds that can be derived for many
numerical approximation schemes. However, these a priori bounds are often
not available, not used properly, or simply not very helpful in addressing ques-
tions related to uncertainty in numerical computations. As we shall see in the
next section, there are some significant mathematical foundations in probability
theory that can be used in inverse problem methods. But to date we have not
made very good use of them to develop practical uncertainty assessment tools.

Happily, there is a “bad news, good news” scenario in all of this. To date,
there is a dearth of good practical tools available for the assessment and control
of uncertainty in the computational sciences. The good news resides in the
potential for significant contributions in such a wide open field — there are
reputations (and maybe money too!) to be made by those who can contribute
even simple, sound mathematical theories resulting in practical, user friendly
tools.



In the next section we will outline an approach to inverse or parameter
estimation problems that relies heavily on known results in probability theory.
As we shall see, this approach allows one to attach quantitative measures of
variability to estimated parameters by viewing them as random variables.

2 Estimation of Parameters in Dynamical Sys-
tems

To illustrate our ideas, we consider here the estimation of constant parameters
in a system of ordinary differential equations. The ideas are readily extended
to partial differential equations with unknown functional (e.g., spatially and/or
time dependent coefficients) parameters as well as to many other systems of
interest in applications.

A typical estimation problem consists of using observations {£}?_, for z(¢;),
1=1,2,...,n, to estimate parameters ¢ € R™ in the vector dynamical system

&(t) = f(t,2(t),9)- (1)

This is often done using a least squares formulation to find a best parameter
value ¢* in some admissible parameter set ) C R™. Thus, we seek to find
q¢* € @Q that provides a minimum for

J(q) = le(ti;q) — & (2)

where z(t;q) is the solution of (1) for a given ¢ € Q.

To introduce uncertainty into this deterministic process, we treat the pa-
rameters as realizations for a random variable and use the data to estimate the
probability distribution function (PDF) for this random variable. More precisely,
let P(Q) denote the linear space of probablilty distributions on @ and treat the
data {#;} as observations for the expected value

€ [e(t; 9)|P) = /Q 2(t:;9)dP(q) 3)

for a given PDF P € P(Q). If P is a discrete PDF with atoms {g;} C Q and
probabilities {p;},p; > 0, p; = 1, then (3) can be written

/Q 2(ti;q)dP() = 3 o(ti; )p;. 4)
J

In any case, the least squares estimation problem becomes: Find P* € P(Q) to

minimize



n
J(P) =Y |€ [2(ts; q)|P] — | (5)

i=1
over P € P(Q). For this problem to be tractable, it would be most helpful to
have a topology on P(Q), continuity of the map P — J(P) in this topology,
compatible compactness results, and some approximation results leading to im-
plementable computational algorithms. Fortunately, probability theory offers a
great start toward a possible complete and tractable computational methodol-

ogy! We summarize useful results from Billingsly [1].

We begin with a metric, the Prohorov metric, for P(Q), the set of probability
measures on the Borel subsets of @), where @ can be any complete metric space
with metric d. For any closed subset F' C @ and € > 0, we define an e—
neighborhood of F' by

Ff={q€Qld(q,q) <e,GEF}.
We then define p : P(Q) x P(Q) — R4 by
p(P1, Py) =inf{e > 0|P,[F] < P2[F¥]+¢, F closed C Q}.
The following results are well-known:
(i) p is a metric (called the Prohorov metric) on P(Q)
(ii) (P(Q),p) is a complete metric space;
(iii) if @ is compact, then (P(Q), p) is a compact metric space.

To develop any approximation ideas, we need to understand the meaning of
the convergence Py — P in the p metric. The definition of the Prohorov metric
is neither intuitive nor easily used directly. Again, we are fortunate to have the
following theorem on equivalent formulations.

Theorem 1 Suppose (Q,d) is a complete metric space and (P(Q), p) is defined
as above. Then for Py, P in P(Q), the following are equivalent:

(ii.) fQ fdPx(q) — fQ fdP(q) for all bounded, uniformly
continuous f : Q — R';

(#ii.) Px[A] — P[A] for all Borel sets A C Q with P[0A] = 0, where A denotes
the boundary of A.



Thus we see that convergence in the p metric is equivalent to convergence
in distribution. Or, if we consider P(Q) C Cg(Q)*, where Cp(Q) denotes
the space of bounded, continuous functions on ) with supremum norm, then
convergence in the p topology is equivalent to weak* convergence in P(Q).
More importantly to us for our discussions here, p(Py, P) — 0 is equivalent to

[ stgar@ ~ [ (6P,

Q Q

or, using standard notation from probability theory,
Elx(t; q) |Pe] — Elx(t; g)| P

This is precisely the convergence one needs to establish continuity in the p
topology of the map

n

P—J(P)=)|Elz(ti;q) |P] - &:|”.

i=1

Continuity of this map along with the compactness of @}, which in turn guaran-
tees compactness of P(Q) in the p metric, is then sufficient to establish existence
of solutions to the problem of minimizing J of (5) over P(Q).

Assuming that existence questions are dealt with, we note that P(Q) with
the p metric is generally an infinite dimensional space. Thus, to treat computa-
tional issues one must consider approximations ideas. Once again, probability
theory provides the needed results.

Theorem 2 Suppose that Q) is a complete separable metric space and let Q, =
{gj}321 be a countable dense subset of Q. Then the set of P € P(Q) such that
P has finite support in Q. is dense in P(Q) in the p metric. That is,

PrQ) ={P=X"_1pjdg, |pj >0, pj=11€ N*,q; € Q. }

is dense in P(Q). Here &, is the Dirac measure with atom at g¢; and NT are
the positive integers.

For a given positive integer M and @, as in the theorem, define

PM ={PeP,(Q)|P =}, p;d,}- (6)

Then PM is a compact subset of P(Q) with PM c PM+! and UZ_,PM =
P-(Q). Moreover, the denseness of P,.(Q) in P(Q) allows us to approximate any
element P € P(Q) by a sequence {Pyr}, Py € PM, such that p(Pys, P) — 0 as
M — oo.



To define a family of approximate minimization problems, we fix {q1,42,...,qm}

in Q, with associated PM defined by (6). Then for Py = Z]Nil pidq; € PM,
the minimization criterion (5) reduces to

2

J(Py) =304 Z,-Nil z(ti; q;)p; — & (7)

and our approximate estimation problem becomes one of minimizing J(Pps) of

(7) over P,y € PM. We observe that this problem is computationally most

attractive. Indeed it is a constrained quadratic programming problem. Letting

p = (p1,...,pm) € RM with p; > 0, Ziupj = 1, we see that minimizing (7) is
equivalent to minimizing

JP) = p-Ap+2p-b+c (8)
where
Ay = ) altsa)e(tisa) kj=12....M
=1
n
i=1
c = Y il

i=1

That is, we are reduced to seeking a minimizer 5* for J(p) subject to p-1; >
0,7=1,2,...,M,and p-1=1. Here 1; is the M vector with zero components
except for a 1 in the jth component and 1 = (1,1,...,1) € RM.

For this constrained optimization problem there are many suitable tech-
niques, e.g., Lagrange multiplier methods, etc. Indeed, MATLAB has routines
that render this problem quickly solvable and we shall illustrate this by example
below.

We remark that any solution p* must satisfy

Ap* = —b

and if A is nonsingular, 5* is given uniquely and depends continuously on —b
and hence continuously on {&#;}? ;. This is precisely the requirements for the
finite dimensional problems to each be well-posed or stable in inverse problem
terminology (i.e., existence, uniqueness, and continuous dependence on data for

P*):
3 Example

We present a very simple example to illustrate a computational algorithm result-
ing from theoretical discussions of the previous section. The particular system



we use is motivated by a problem in the assessment of the efficiency of a vacci-
nation program [2, 3] by using data {&;} for the aggregate population z(¢;) of
vaccinated but not infected individuals at time ¢;. The evolution of population
is given by

&(t) = —qG(t)x(t), =(0) = o, (9)

where G(t) represents the known rate of exposure to infection, g is the suscepti-
bility to “environmental exposure” subsequent to vaccination of the population
at time ¢ = 0, and ¢ is the known number of individuals initially vaccinated.
The best susceptibility parameter ¢ is to be chosen from @ = [0,1] and in the
spirit of the presentation of the previous section, we seek to identify a proba-
bility distribution P(q) € P(Q) using the data {Z;} as the expected number of
vaccinated but not yet infected individuals for a given distribution.

All calculations were carried out using MATLAB routines. “Data” {Z;} was
prepared by solving (9) with a specific value of ¢ = ¢* (= .5 in the example
presented here) and G(t) given by

0 0<t<.195
G(t) =< 100(t—.195) .195 <t <.205
1 205 < t.

Relative random noise was added to these solutions so that the “data” was given
by &; = x(t;; ¢*)[1+¢€;] where the €; are independent Gaussian random variables
with mean zero and variance o2 (¢ = .005 was used in the computations detailed
below).

To discretize @ in formulating the approximation class given in (6), for
a given M we used a uniform partition of @) defined by {qi,...,qm} where
¢1 =0,qm =1 and gj41 — gj = 37— The resulting constrained problem using
(8) was solved using the gp (constrained quadratic programming) algorithm in
MATLAB. Since the system (9) was particularly simple in this case, the values
z(t;;¢*) were obtained analytically.

We present in the figures below the estimated discrete probability densities
represented by p = (p1,...,pm) and the corresponding discontinuous distribu-
tions Py = E;VI:I p;jdg; for several values of M. We note that in general we
observe convergence of the probablity distributions in the Prohorov metric (as
guaranteed by the theory of the previous section), while the discrete densities do
not in general converge in any meaningful sense on @ = [0, 1]. In this example
the true probability distribution P* is given by P*[A] = 01if .5 ¢ A, P*[A] =1
if .5 € A. The computational algorithm performs similarly in cases where the
underlying distribution is a continuous distribution with a corresponding prob-
ability density function (e.g., see [2]).
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Figure 1. Approximate probability densities for a sequence of M values.
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4 Concluding Remarks

The probablistic ideas presented in Section 2 above have been used in a fun-
damental way in a diverse number of applications. They are the foundation
of approximation ideas developed in the 1950’s-1960’s in control theory (e.g.,
chattering controls, Young’s measures, sliding regimes, relaxed curves, etc. in
the classical works of L.C. Young, E.J. McShane, A.F. Filippov and J. Warga
between 1937 and 1970 — see [4] for discussions and references) and in the the-
ory of effective material moduli in composite materials in the 1970’s — 1980’s.
More recently they have been used in estimation of distributed growth rates
from aggregate population data [5, 6, 7] and in an application to the Preisach
theory of hysteresis in input operators for shape memory alloys [8, 9].

The considerations in the previous sections (which are simple initial remarks)
suggest the possiblity of a useful reformulation of many of the concepts and
approaches in inverse problem methodology, both theory and computation.

There are a number of other relevant important topics that, due to lack of
time, we will not mention in detail here. Included are model approximation
and order reduction and the question of “goodness” of the reduced order model.
The popular Karhunen — Loéve or proper orthogonal decomposition (POD)
techniques offer great promise here. These model reduction techniques have been
shown to be quite useful in both open loop and feedback or closed loop control
computational methodologies (see [10, 11] and the references therein) and are
currently being tested in inverse problem methodologies. The POD formulation
itself is of interest since it inherently contains techniques for computing the
efficiency of the reduced order model in capturing the dynamic energy present
in the data or large scale model used to generate “snapshots”. It thus has
potential for use in a “goodness of model” framework.

In inverse problem methodology, there are least squares probablistic based
statistical tests for comparing the fits of different models to data wherever the
models are special cases of a larger model (see [12] and in particular Chapter V.5-
7 of [13]). The underlying ideas can be exploited to develop a type of uncertainty
measure in inverse problem techniques.
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